

Evolution of Airline Revenue Management Dr. Peter Belobaba

Istanbul Technical University Air Transportation Management M.Sc. Program Network, Fleet and Schedule Strategic Planning Module 22 : 2 April 2016

Lecture Outline

1. Review: Airline Pricing

• Differential Pricing Theory

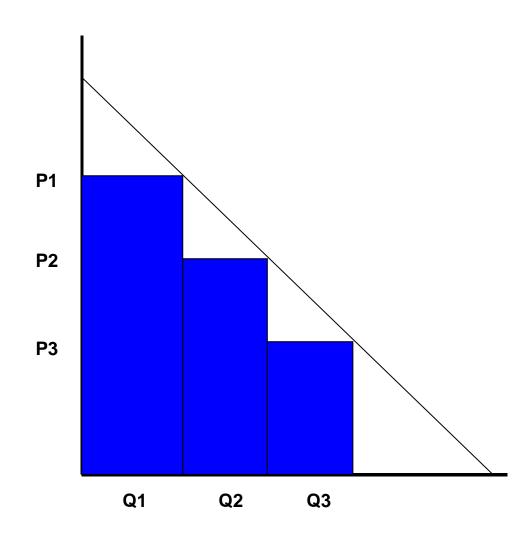
2. Revenue Management Systems

- Load Factor vs. Yield Strategies
- RM System Components

3. Single-leg Fare Class Seat Allocation Problem

- EMSRb Model for Seat Protection
- 4. Overbooking Models and Practice
 - Mathematical Approaches to Overbooking
 - Denied Boarding vs. Spoilage Costs

Airline Revenue Maximization


Differential Pricing:

 Various "fare products" offered at different prices for travel in the same O-D market

Revenue Management (RM):

- Determines the number of seats to be made available to each "fare class" on a flight, by setting booking limits on low fare seats
- With high proportion of fixed operating costs for a schedule, maximize revenues to maximize profits
- With very few exceptions, virtually *all airlines* make use of differential pricing and RM:
 - Including most new entrant Low-Cost Carriers (LCCs) with "simpler" fares

Differential Pricing Theory

- Market segments with different "willingness to pay" for air travel
- Different "fare products" offered to business versus leisure travelers
- Prevent diversion by setting restrictions on lower fare products and limiting seats available
- Increased revenues and higher load factors than any single fare strategy

BOS-IST Economy Class Fare Structure Turkish Airlines, April 2015

Class	One Way Fare	Advance Purchase	Minimum Stay	Change Fee	Refunds	RT Required
Y	\$1072	None	None	None	Yes	No
В	\$934	None	None	None	Yes	No
Μ	\$725	0/3 (TKT)	Sat Night	\$135	Νο	Yes
н	\$612	0/3 (TKT)	Sat Night	\$135	No	Yes
S	\$512	0/3 (TKT)	Sat Night	\$135	No	Yes
E	\$425	0/3 (TKT)	Sat Night	\$135	No	Yes
Q	\$350	0/3 (TKT)	Sat Night	\$135	No	Yes
L	\$238	0/3 (TKT)	Sat Night	\$135	No	Yes

Yield Management = Revenue Management

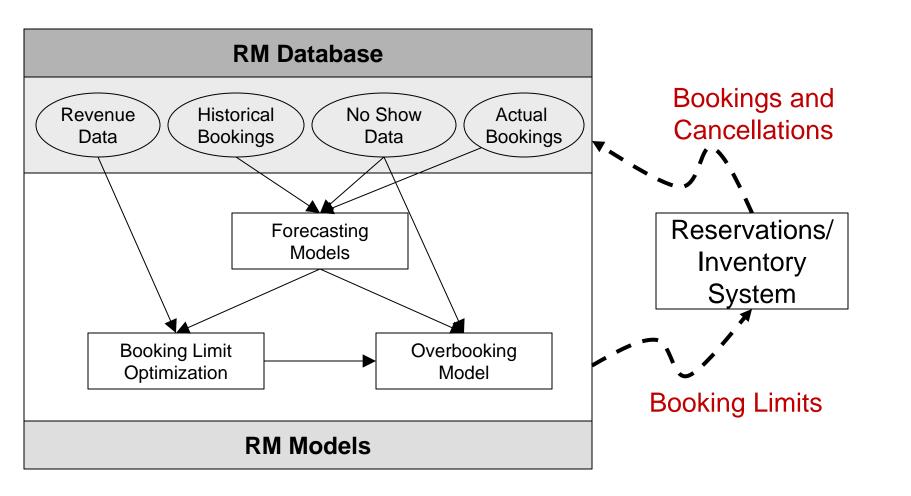
- Primary objective is to protect seats for late-booking high-fare demand, given limited capacity:
 - Forecast future booking demand for each fare product
 - Optimize number of seats to be made available to each fare class

• Optimal control of available seat inventory:

- On high demand flights, limit discount fare and group bookings to increase overall yield (average fare) and revenue.
- On low demand flights, sell empty seats at any low fare to increase load factors and revenue.
- <u>Revenue</u> maximization requires a balance of yield and load factor

• Balance yield vs. load factor to maximize revenues

Revenue Management Strategies


EXAMPLE: 2100 MILE FLIGHT LEG CAPACITY = 200

NUMBER OF SEATS SOLD:							
FARE	AVERAGE	YIELD	LOAD FACTOR	REVENUE			
CLASS	REVENUE	EMPHASIS	EMPHASIS	EMPHASIS			
Y	\$420	20	10	17			
B	\$360	23	13	23			
H	\$230	22	14	19			
V	\$180	30	55	37			
Q	\$120	15	68	40			
LC TC AV	OTAL PASSENGERS OAD FACTOR OTAL REVENUE VERAGE FARE IELD (CENTS/RPM)	110 55% \$28,940 \$263 12.53	160 80% \$30,160 \$189 8.98	136 68% \$31,250 \$230 10.94			

Typical 3rd Generation RM System

- Collects and maintains historical booking data by flight and fare class, for each past departure date.
- Forecasts future booking demand and no-show rates by flight departure date and fare class.
- Calculates limits to maximize total flight revenues:
 - Overbooking levels to minimize costs of spoilage/denied boardings
 - Booking class limits on low-value classes to protect high-fare seats
- Interactive decision support for RM analysts:
 - Can review, accept or reject recommendations

Third Generation Leg-based RM System

Components of 3rd Generation RM

Demand Forecasting

 Time series methods applied to historical booking data to forecast demand by fare class for each future flight/departure date

Flight Leg Optimization

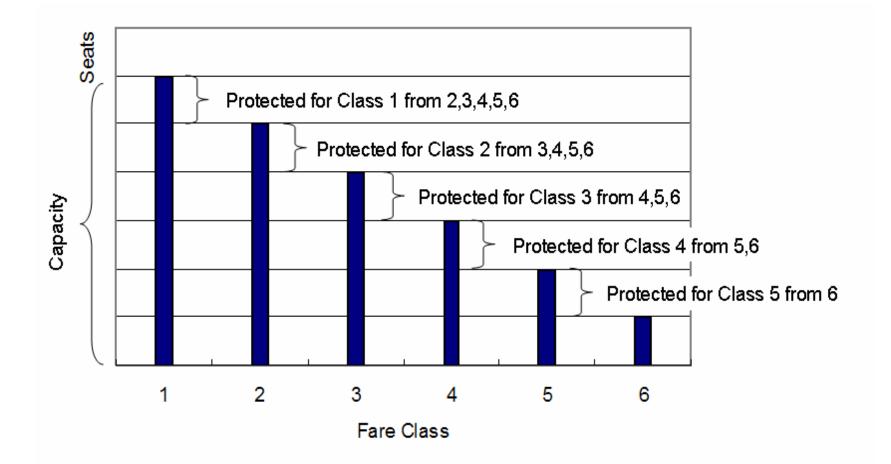
 Expected Marginal Seat Revenue (EMSR) models determine revenue-maximizing mix of seats for each fare class

Overbooking

 Cost-based overbooking models minimize denied boarding and spoilage costs, based on probabilistic analysis of no-shows

Revenue increases of 4 to 6 percent typically quoted

• From overbooking and fare class mix optimization alone


Leg-Based Fare Class Mix Optimization

- Determine the optimal number of seats to make available to each booking class.
- Given for each future flight leg departure:
 - Total remaining booking capacity of (typically) the coach compartment
 - Forecasts of future booking demand by fare class between current DCP and departure
 - Revenue estimates for each fare (booking) class

• Objective is to maximize total expected revenue:

 Protect seats for each fare class based on revenue value, taking into account forecast uncertainty and probability of realizing the forecasted demand

Serially Nested Buckets

EMSRb Model Calculations

• To calculate the optimal protection levels:

Define $P_i(S_i)$ = probability that $X_i \ge S_i$, where S_i is the number of seats made available to class i, X_i is the random demand for class I

• The expected marginal revenue of making the Sth seat available to class i is:

 $EMSR_i(S_i) = R_i * P_i(S_i)$ where R_i is the average revenue (or fare) from class i

• The optimal protection level, π_1 for class 1 from class 2 satisfies:

 $\text{EMSR}_{1}(\pi_{1}) = \text{R}_{1} * \text{P}_{1}(\pi_{1}) = \text{R}_{2}$

Consider the following flight leg example:

<u>Class</u>	<u>Mean Fcst.</u>	<u>Std. Dev</u> .	Fare
Υ	10	3	1000
В	15	5	700
Μ	20	7	500
Q	30	10	350

• To find the protection for the Y fare class, we want to find the largest value of π_Y for which $EMSR_Y(\pi_Y) = R_Y * P_Y(\pi_Y) \ge R_B$

$$EMSR_{Y}(\pi_{Y}) = 1000 * P_{Y}(\pi_{Y}) \ge 700$$
$$P_{Y}(\pi_{Y}) \ge 0.70$$

where $P_Y(\pi_Y)$ = probability that $X_Y \ge \pi_{Y_1}$

 Assume demand in Y class is *normally* distributed, then we can create a standardized normal random variable as (X_Y - 10)/3:

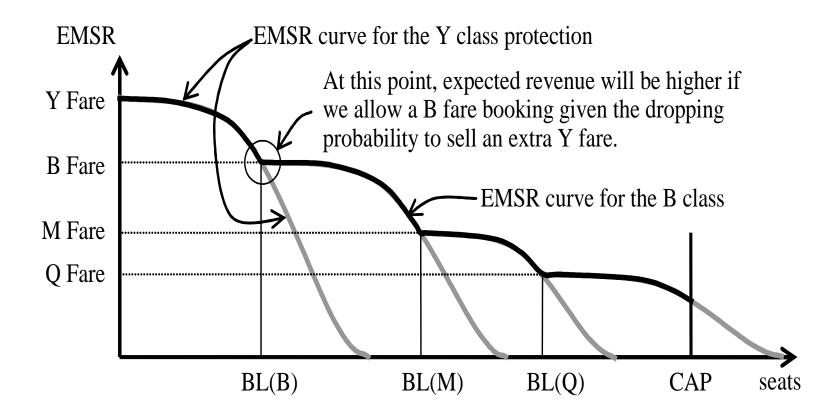
for $\pi_{Y} = 7$, Prob { (X_Y-10)/3 ≥ (7 - 10)/3 } = 0.841

for $\pi_{\rm Y}$ = 8, Prob { (X_Y -10)/3 ≥ (8 - 10)/3 } = 0.747

for $\pi_{Y} = 9$, Prob { (X_Y-10)/3 ≥ (9 - 10)/3 } = 0.63

• $\pi_{Y} = 8$ is the largest integer value of π_{Y} that gives a probability ≥ 0.7 and we will protect 8 seats for Y class.

Joint protection for classes 1 through n from class n+1


$$\overline{X}_{1,n} = \sum_{i=1}^{n} \overline{X}_{i}$$
 $\hat{\sigma}_{1,n} = \sqrt{\sum_{i=1}^{n} \hat{\sigma}_{i}^{2}}$
 $R_{1,n} = rac{\sum_{i=1}^{n} R_{i} * \overline{X}_{i}}{\overline{X}_{1,n}}$

• We then find the value of π_n that makes

EMSR_{1,n}(π_n) = R_{1,n} * P_{1,n}(π_n) = R_{n+1}

• Once π_n is found, set BL_{n+1} = Capacity - π_n

Graphical Representation of EMSR Curves and Booking Limits

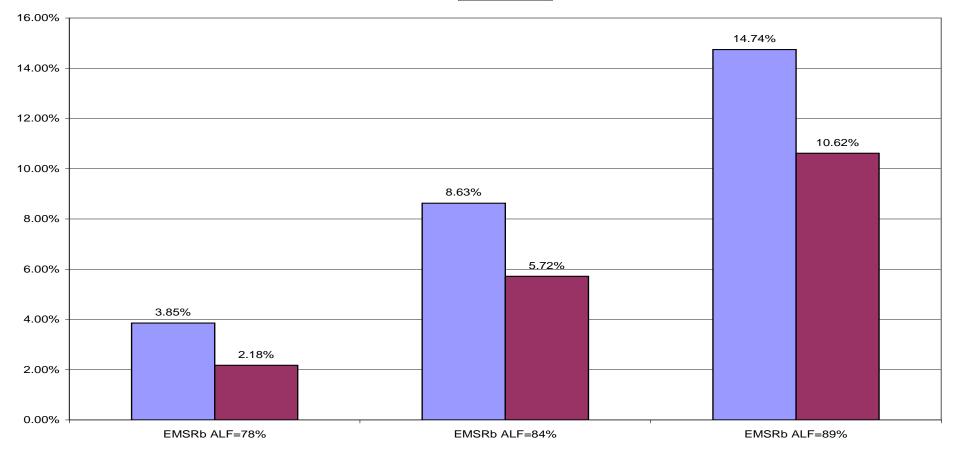
EMSRb Seat Protection Model

CABIN CA	РАСП	ΓY =	135				
AVAILABLE SEATS =		135					
BOOKING	AVEF	RAGE	SEATS	FORECAST	DEMAND	JOINT	BOOKING
CLASS	FARE		BOOKED	MEAN	SIGMA	PROTECT	LIMIT
Y	\$	670	0	12	7	6	135
Μ	\$	550	0	17	8	23	129
В	\$	420	0	10	6	37	112
V	\$	310	0	22	9	62	98
Q	\$	220	0	27	10	95	73
L	\$	140	0	47	14		40
	SUM		0	135			

Dynamic Revision and Intervention

- RM systems revise forecasts and re-optimize booking limits at numerous "checkpoints":
 - Monitor actual bookings vs. previously forecasted demand
 - Re-forecast demand and re-optimize at fixed checkpoints or when unexpected booking activity occurs
 - Can mean substantial changes in fare class availability from one day to the next, even for the same flight departure
- Substantial proportion of fare mix revenue gain comes from dynamic revision of booking limits:
 - Human intervention is important in unusual circumstances, such as "unexplained" surges in demand due to special events

Revision of Forecasts and Limits as Bookings Accepted


CABIN CAPACITY = AVAILABLE SEATS =		135					
		63					
BOOKING	AVEF	RAGE	SEATS	FORECAST	DEMAND	JOINT	BOOKING
CLASS	FARE		BOOKED	MEAN	SIGMA	PROTECT	LIMIT
Y	\$	670	2	10	5	5	63
Μ	\$	550	4	13	7	19	58
В	\$	420	5	5	2	27	44
V	\$	310	12	10	5	40	36
Q	\$	220	17	20	6	63	23
L	\$	140	32	15	4		0
	SUN		72	73			

Higher than expected Q bookings close L class

Leg-Based RM Benefits Increase with Average Load Factor

Revenue Gain When Both Airlines Implement EMSRb

■AL1 ■AL2

- Determine maximum number of bookings to accept for a given physical capacity.
- Minimize total costs of <u>denied boardings</u> and <u>spoilage</u> (lost revenue).
- U.S. domestic no-show rates can reach 15-20 percent of final pre-departure bookings:
 - On peak holiday days, when high no-shows are least desirable
 - Average no-show rates have dropped, to about 10% with more fare penalties and better efforts by airlines to firm up bookings
- Effective overbooking can generate as much revenue gain as fare class seat allocation.

Overbooking Terminology

Physical Capacity	CAP
Authorized Capacity	AU
Confirmed Bookings	BKD <= AU
No-show rate	NSR
Show-up rate	SUR
Passengers Boarded	PAX
Denied Boardings	DB
Spoilage	SP

Deterministic Overbooking Model

- Based on estimate of mean NSR from recent history:
 - Assume that BKD=AU ("worst case" scenario)
 - Find AU such that AU NSR*AU = CAP
 - Or, AU = CAP/(1-NSR)
- For CAP=100 and NSR=0.20, then:

AU = 100/(1-.20) = 125

• How would this model perform in the real world, where NSR is not known with certainty?

Probabilistic/Risk Model

- Incorporates uncertainty about NSR for future flight:
 - Standard deviation of NSR from history, STD
- Find AU that will keep DB=0, assuming BKD=AU, with a 95% level of confidence:
 - Assume a probability (Gaussian) distribution of no-show rates
- Optimal AU given CAP, SUR, STD with objective of DB=0 with 95% confidence is:

AU =_	CAP	=	CAP	
	SUR + 1.645 STD		1- NSR + 1.645 STD	

• In our example, with STD= 0.05:

AU = 100 / (1-0.20 + 1.645*0.05) = 113

Probabilistic Model Extensions

1. Reduce level of confidence of exceeding DB limit:

• Z factor in denominator will decrease, causing increase in AU

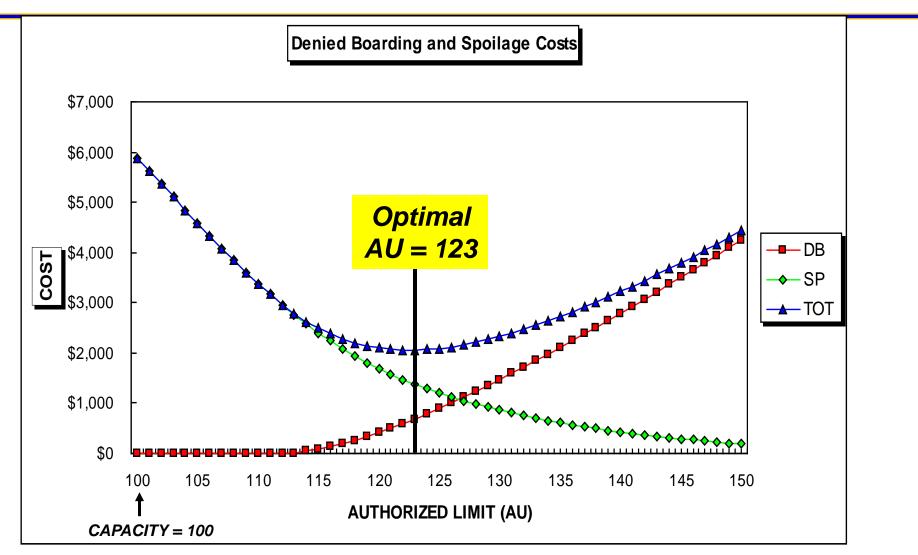
2. Increase DB tolerance to account for voluntary DB:

- Numerator becomes (CAP+ VOLDB), increases AU
- 3. Include forecasted empty F or C cabin seats for upgrading:
 - Numerator becomes (CAP+FEMPTY+CEMPTY), increases AU
 - Empty F+C could also be "overbooked"

4. Deduct group bookings and overbook remaining capacity only:

- Firm groups much more likely to show up
- Flights with firm groups should have lower AU

Cost-Based Overbooking Model


- Find AU that minimizes : [Cost of DB + Cost of SP]
- For any given AU:

<u>Total Cost</u> = \$DB * E[DB] + \$SP * E[SP]

\$DB and \$SP= cost per DB and SP, respectively
E[DB] = expected number of DBs, given AU
E[SP] = expected number of SP seats, given AU

 Mathematical search over range of AU values to find minimum total cost.

Example: Cost-Based Overbooking Model

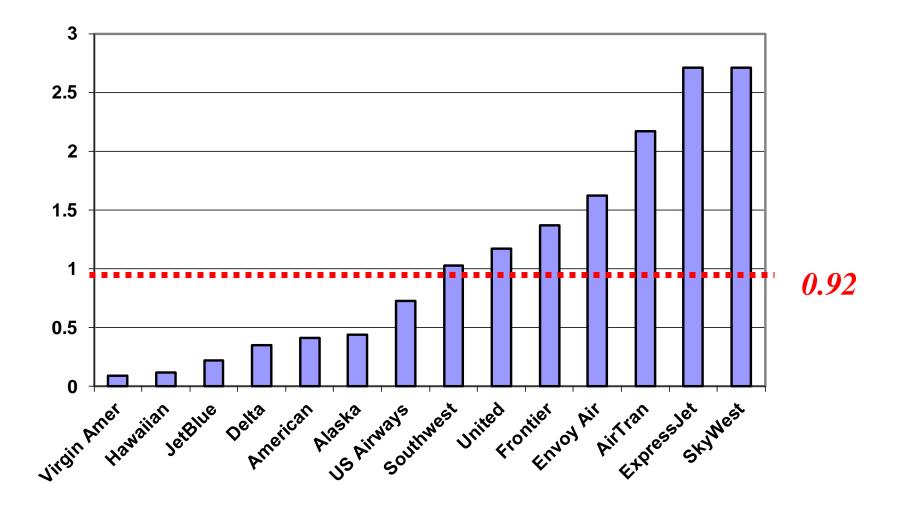
Costs of Denied Boardings and Spoilage

- Denied Boarding Costs:
 - Cash compensation for involuntary DB
 - Free travel vouchers for voluntary DB
 - Meal and hotel costs for displaced passengers
 - Space on other airlines
 - Cost of lost passenger goodwill

• Spoilage Costs: Loss of revenue from seat that departed empty

- Average revenue per seat for leg?
- Highest fare class revenue on leg (since closed flights lose latebooking passengers)?
- Lowest fare class revenue on leg (since increased AU would have allowed another discount seat)?

Voluntary vs. Involuntary DBs


• Comprehensive Voluntary DB Program:

- Requires training and cooperation of station crews
- Identify potential volunteers at check-in
- Offer as much "soft" compensation as needed to make the passenger happy

• US airlines very successful in managing DBs:

- 2013 involuntary DB rate was 0.92 per 10,000
- About 90% of DBs in U.S. are volunteers
- Good treatment of volunteers generates goodwill

2014 US Involuntary DBs per 10,000

Source: www.bts.gov

Current State of RM Practice

- Most of airlines (legacy and LCC) have implemented 3rd generation Leg RM systems:
 - Revenue gains of 4 to 6 percent, at 75-80% average system load factors
 - Tactical matching of demand to supply channel low-fare demand to empty flights
 - Maintain competitive pricing while controlling dilution
- About 15-20 leading airlines are implementing 4th generation Network RM systems
 - Further distinguish between local and connecting requests based on <u>network</u> revenue value